2a(a-8)+7=5(a+2)-3a-19

Simple and best practice solution for 2a(a-8)+7=5(a+2)-3a-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2a(a-8)+7=5(a+2)-3a-19 equation:



2a(a-8)+7=5(a+2)-3a-19
We move all terms to the left:
2a(a-8)+7-(5(a+2)-3a-19)=0
We multiply parentheses
2a^2-16a-(5(a+2)-3a-19)+7=0
We calculate terms in parentheses: -(5(a+2)-3a-19), so:
5(a+2)-3a-19
We add all the numbers together, and all the variables
-3a+5(a+2)-19
We multiply parentheses
-3a+5a+10-19
We add all the numbers together, and all the variables
2a-9
Back to the equation:
-(2a-9)
We get rid of parentheses
2a^2-16a-2a+9+7=0
We add all the numbers together, and all the variables
2a^2-18a+16=0
a = 2; b = -18; c = +16;
Δ = b2-4ac
Δ = -182-4·2·16
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-14}{2*2}=\frac{4}{4} =1 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+14}{2*2}=\frac{32}{4} =8 $

See similar equations:

| k/k+5=10/6k | | 1.5x1.5= | | k/k+5=10/6 | | 3(5-p)-2(5+p)=3(p=1 | | 4x+16=-8x+40 | | 9/6=x/2.5 | | -13n=14=92 | | 7x=2x+16(1)/(4) | | 62,450/50-3w;w=5 | | x=7x+5+8x | | (2*x+3)/4=3x-5 | | 4(x-8)+2x=3x-14 | | (6x-4)(3x+5)=0 | | 84/12+(5-7x7)-72/6x2=x | | 3(x-8)+2x=3x-14 | | 7x+4–=5x–6. | | (2/5)x+2=8 | | 0.1r-1=0.65 | | -3=8n-35 | | 2y-63=21 | | V=32-32t | | 5n-13=40 | | 2x+4x+x+x=360 | | x=(x+1)^(1/2) | | 1,1+1.2x-5.4=-10 | | n/9n=63 | | 76y−3(2y−7)=76 | | 17=14+3(-2-x) | | 2/3x+4=32-4/3x | | 2y-79=58 | | 11=12x-5 | | `7x+11=4x-4` |

Equations solver categories