If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2X^2+5X=1200
We move all terms to the left:
2X^2+5X-(1200)=0
a = 2; b = 5; c = -1200;
Δ = b2-4ac
Δ = 52-4·2·(-1200)
Δ = 9625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9625}=\sqrt{25*385}=\sqrt{25}*\sqrt{385}=5\sqrt{385}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{385}}{2*2}=\frac{-5-5\sqrt{385}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{385}}{2*2}=\frac{-5+5\sqrt{385}}{4} $
| 5(x+8)+3=-2x+7(x+2) | | 11x =$9.70 | | 2t-0.3=0.4 | | x+138=50 | | a-1/3=-1/3 | | w/3-2=2.2 | | 7q-3=11 | | -8=4(p+4) | | 2/5y=0 | | 10(g+5)=2(g-9) | | -19=-5+2v= | | -2x-10x+3=-x+5 | | (3x+5)(x+3)=180 | | 12x-1+3=15x-1 | | 8x-2/5=86 | | w/3-2=3.2 | | 5x+26=6x+22 | | X^2-4.8x+2.4=0 | | 2t-3=4 | | 3g-4=2–3g | | 6^x=4.2 | | w/4-4=-1 | | 2x-15=4x-20 | | -5x-1(-7-4x)=2(3x-4) | | x^2+8x+64=-23 | | (5)(w+6)=(3)(w-4) | | 3/5y=-8 | | -7+19-4x=108 | | x+2x-14=76 | | 400n=200 | | -3(g-4)=2–3g | | 1/4(4r-8)=r-24 |