29(3x+-2)+12/3x=30

Simple and best practice solution for 29(3x+-2)+12/3x=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 29(3x+-2)+12/3x=30 equation:



29(3x+-2)+12/3x=30
We move all terms to the left:
29(3x+-2)+12/3x-(30)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
29(3x-2)+12/3x-30=0
We multiply parentheses
87x+12/3x-58-30=0
We multiply all the terms by the denominator
87x*3x-58*3x-30*3x+12=0
Wy multiply elements
261x^2-174x-90x+12=0
We add all the numbers together, and all the variables
261x^2-264x+12=0
a = 261; b = -264; c = +12;
Δ = b2-4ac
Δ = -2642-4·261·12
Δ = 57168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57168}=\sqrt{144*397}=\sqrt{144}*\sqrt{397}=12\sqrt{397}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-264)-12\sqrt{397}}{2*261}=\frac{264-12\sqrt{397}}{522} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-264)+12\sqrt{397}}{2*261}=\frac{264+12\sqrt{397}}{522} $

See similar equations:

| -3(2+4x)=48 | | -4=2-4x-2 | | 50/100=x/17 | | 5x+1=2x+40 | | b-4b=-6 | | 6x+59+3x-14=180 | | 9q+5+q=2q+69 | | X^2-8x-63=0 | | 3(x+2)+1=5x-2(-4+x) | | 6(-5x+2)=72 | | -4=-2b+b | | 8x^-48x^+72x=0 | | (-29+3)z=-345 | | 3(x+2)+1=5x-(-4+x) | | 225=50x | | 2r+6+2r=10 | | 3/4x=1/8(x-5)=1/4 | | (3+x)/3+(x+7)/2=4x+1 | | 12=r=9 | | 15-5n/2=40 | | (-29+3)z=345 | | 40+20m=100 | | 20+40m=100 | | -5=x+4x | | -2(3t-5)+4t=7t-6 | | )8a+8)+(15a+2)=-8 | | 4x-13=2x9 | | 4.7x-2.5=2.7x=12.8-1.6x | | x/7+1/2=8 | | 4=5b+1-4b | | 32a+34=304 | | x-1.5=x+2.4 |

Equations solver categories