28x+26=(x+3)(x-2)

Simple and best practice solution for 28x+26=(x+3)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28x+26=(x+3)(x-2) equation:



28x+26=(x+3)(x-2)
We move all terms to the left:
28x+26-((x+3)(x-2))=0
We multiply parentheses ..
-((+x^2-2x+3x-6))+28x+26=0
We calculate terms in parentheses: -((+x^2-2x+3x-6)), so:
(+x^2-2x+3x-6)
We get rid of parentheses
x^2-2x+3x-6
We add all the numbers together, and all the variables
x^2+x-6
Back to the equation:
-(x^2+x-6)
We add all the numbers together, and all the variables
28x-(x^2+x-6)+26=0
We get rid of parentheses
-x^2+28x-x+6+26=0
We add all the numbers together, and all the variables
-1x^2+27x+32=0
a = -1; b = 27; c = +32;
Δ = b2-4ac
Δ = 272-4·(-1)·32
Δ = 857
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{857}}{2*-1}=\frac{-27-\sqrt{857}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{857}}{2*-1}=\frac{-27+\sqrt{857}}{-2} $

See similar equations:

| 10x-(6x+10)=30 | | 2h-h=12 | | 10(y+10)=7² | | 0.5(10–4s)=3s+10 | | 7(y+7)=10² | | 15s-11s=16 | | -3x+27+12x=9 | | 3x2+6x-12=0 | | 8s+2s=-90 | | 4=3p-10 | | 99=4z+45+2z | | G(-1/3)=x-2x | | 10x-(6+10)=30 | | 7(9+7)=8(x+8) | | q-47/6=13/2 | | m^2-8m+3=0 | | (7x-3)-(4+2x)=0 | | -3=11x+18 | | 2(10+2)=3(x+3) | | 19c-10c=18 | | 5x-5=9x+35 | | 7x-19=121 | | 14x+(6x+14)=194 | | |7+3x|=x-1 | | (7x-3)+(4+2x)=0 | | 0,75x-0,125=0,75 | | 0=x^2+7x-40 | | -x-4=-3x+6 | | 14x(6x+14)=194 | | 3x+x=1+1 | | 6t+3=8 | | 10(x-2)=-20. |

Equations solver categories