280/x+2=20+2.5x

Simple and best practice solution for 280/x+2=20+2.5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 280/x+2=20+2.5x equation:



280/x+2=20+2.5x
We move all terms to the left:
280/x+2-(20+2.5x)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
280/x-(2.5x+20)+2=0
We get rid of parentheses
280/x-2.5x-20+2=0
We multiply all the terms by the denominator
-(2.5x)*x-20*x+2*x+280=0
We add all the numbers together, and all the variables
-(+2.5x)*x-20*x+2*x+280=0
We add all the numbers together, and all the variables
-18x-(+2.5x)*x+280=0
We multiply parentheses
-2x^2-18x+280=0
a = -2; b = -18; c = +280;
Δ = b2-4ac
Δ = -182-4·(-2)·280
Δ = 2564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2564}=\sqrt{4*641}=\sqrt{4}*\sqrt{641}=2\sqrt{641}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{641}}{2*-2}=\frac{18-2\sqrt{641}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{641}}{2*-2}=\frac{18+2\sqrt{641}}{-4} $

See similar equations:

| 37=25+x | | (2x2)-64=0 | | 39=((x^2)/200)+x-2 | | 39=(x^2/200)+x-2 | | 18.3-4.2r=8.24 | | 2(x+3)=4x-1)/2+7 | | ((48/x)+4)(x)=0 | | (48/x+4)(x)=0 | | 0.003x=7 | | 70x+20x/2=2500 | | 3x-1=7x+19 | | 5x+21=6x+27 | | 3*x-x/6=0 | | 17/6x=51 | | 17/x-51=0 | | 12w+24=12w+15 | | 4-3(x+5)+1=2(x+5) | | (2x+1)•x=28 | | 4y^2+4=148 | | 3(2t/7)=69 | | 7x+6=2x+12 | | 16x-11=12x+5 | | 75x=1.5 | | 0=3x+2/34 | | 3x+×=1 | | 5x=6x^2+1 | | y=2×1+7 | | (-4)*x=-9-13 | | 4(r+1.6)-6r=7.9 | | 3/4(p-8)=1/2(p+2) | | 2m+8=4m-8 | | x(-7/10)=1/2 |

Equations solver categories