27-1/2x=1/7x+9

Simple and best practice solution for 27-1/2x=1/7x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 27-1/2x=1/7x+9 equation:



27-1/2x=1/7x+9
We move all terms to the left:
27-1/2x-(1/7x+9)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 7x+9)!=0
x∈R
We get rid of parentheses
-1/2x-1/7x-9+27=0
We calculate fractions
(-7x)/14x^2+(-2x)/14x^2-9+27=0
We add all the numbers together, and all the variables
(-7x)/14x^2+(-2x)/14x^2+18=0
We multiply all the terms by the denominator
(-7x)+(-2x)+18*14x^2=0
Wy multiply elements
252x^2+(-7x)+(-2x)=0
We get rid of parentheses
252x^2-7x-2x=0
We add all the numbers together, and all the variables
252x^2-9x=0
a = 252; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·252·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*252}=\frac{0}{504} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*252}=\frac{18}{504} =1/28 $

See similar equations:

| 12(4x+3)=3x-3/2 | | 3+(8x+15)=180 | | u/2+11=14 | | 4(w-4)+6w=14 | | 3x+6-5x=4-8+3x | | v+8=73 | | 12(8x+2)=4(6x+6)-32 | | 4.6x31/4=0 | | 5(2x-4)=6x+36-4x | | 6x-10=4x+1 | | 2=11-3m | | 3(x+2)=4(2x-7) | | 5x∙3+5=2∙3x+32= | | 75=z-23 | | 5s^2+s−7=0 | | 3x-5(x-5)=-2+3x+17 | | (1/2x)(x)(3/2x)=100 | | -2(y-9)=44 | | 800-150x=200+50x | | -x^2+6x+72=0 | | -7y+1=43 | | 7w+3=4w+2²+8 | | 2x^2-x-10=110 | | 7,4-(x-2,6)=19 | | 12d+3=84 | | X+63+x+123=180 | | 12x+10=2x+8 | | (x/5)+11=10 | | (9x-3)/3=14 | | 12d+36=84 | | 4n=-8n-24 | | m-30=34 |

Equations solver categories