27-(2c+4)=2(c+4)c

Simple and best practice solution for 27-(2c+4)=2(c+4)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 27-(2c+4)=2(c+4)c equation:



27-(2c+4)=2(c+4)c
We move all terms to the left:
27-(2c+4)-(2(c+4)c)=0
We get rid of parentheses
-2c-(2(c+4)c)-4+27=0
We calculate terms in parentheses: -(2(c+4)c), so:
2(c+4)c
We multiply parentheses
2c^2+8c
Back to the equation:
-(2c^2+8c)
We add all the numbers together, and all the variables
-2c-(2c^2+8c)+23=0
We get rid of parentheses
-2c^2-2c-8c+23=0
We add all the numbers together, and all the variables
-2c^2-10c+23=0
a = -2; b = -10; c = +23;
Δ = b2-4ac
Δ = -102-4·(-2)·23
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{71}}{2*-2}=\frac{10-2\sqrt{71}}{-4} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{71}}{2*-2}=\frac{10+2\sqrt{71}}{-4} $

See similar equations:

| 3(2m-4)=m+8 | | -8(-7v+8)+8(1+v)=72 | | 2(3x+10)=x | | 9(5-2x)=81 | | x^2+3-160=0 | | 8(5y-3)=136 | | -8(8-6a)+2(a-5)=26 | | m8+ 12=16 | | 7(m-6)=-35 | | )63=-7(r-3)-7(4-6r) | | x+12+150=190 | | 60=5(g−72) | | -5(-6b+3)-(2+6b)=7 | | -3x+4=6x=5 | | 98=7(j+3) | | 8y+y^2=165 | | 10^x=225 | | 5^n=125^5 | | 81=9(m+4) | | 4x²=-5-1 | | )-115=-3+8(-2r-4) | | (0.9x-1.1)×10=(0.3+0.2x)×10 | | 90+(5x-6)=180 | | Y=18.16x20 | | 6÷x-8=2÷x+6 | | 96=4(4x+3)+4 | | 6/×-8=2/x+6 | | 27.48=x3.08+2.50(10-x) | | -134=-4+5(-2-4b) | | 3(12^3x)-2=47 | | F(x)=-2x+17 | | 50x/7-20=25x/21+20 |

Equations solver categories