26=-2/5x+4x-10

Simple and best practice solution for 26=-2/5x+4x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 26=-2/5x+4x-10 equation:



26=-2/5x+4x-10
We move all terms to the left:
26-(-2/5x+4x-10)=0
Domain of the equation: 5x+4x-10)!=0
x∈R
We add all the numbers together, and all the variables
-(4x-2/5x-10)+26=0
We get rid of parentheses
-4x+2/5x+10+26=0
We multiply all the terms by the denominator
-4x*5x+10*5x+26*5x+2=0
Wy multiply elements
-20x^2+50x+130x+2=0
We add all the numbers together, and all the variables
-20x^2+180x+2=0
a = -20; b = 180; c = +2;
Δ = b2-4ac
Δ = 1802-4·(-20)·2
Δ = 32560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32560}=\sqrt{16*2035}=\sqrt{16}*\sqrt{2035}=4\sqrt{2035}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-4\sqrt{2035}}{2*-20}=\frac{-180-4\sqrt{2035}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+4\sqrt{2035}}{2*-20}=\frac{-180+4\sqrt{2035}}{-40} $

See similar equations:

| (5x+1)+(3x+1)=90 | | a17+9=10 | | x/5-3=2/3x+16 | | 0.80x+20.99=242.84 | | 5q-0.2=0.9 | | 5x=13x-88 | | 45+90+8x+21=180 | | -9.2=y/5+3.3 | | 2x=2(x+14) | | n+1/4=288 | | -19z=-18z+17 | | 4x+4/7=-7x+4/7 | | y/8-3.1=-15.9 | | 1|3x=4x+11 | | 8x+45+90+21=180 | | -11a=-3 | | (12x+1)(x-1)=-3 | | 9(x+4)=-3×+324 | | -8x+6(x-4)=-34 | | 65x+615=240 | | X^2+2.4x-19.36=0 | | 7y-10=-3y+64 | | 240x+615=65 | | 10c-74=9c-65 | | 16u=72+8u | | X^2+2.4x-19.3=0 | | 2x^2-8x=4x+80 | | 3-7q=8q | | 2x+7.56=20.18 | | 8,5=2,2t | | 8x-4=10x+8 | | 0.3x=4x+11 |

Equations solver categories