If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-9=0
a = 25; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·25·(-9)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*25}=\frac{-30}{50} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*25}=\frac{30}{50} =3/5 $
| 50000x=49000x | | 75x=99x | | 50x=90x | | 35+63+1.1x=169.50 | | 0=2/(3x-1) | | 1/3a=24 | | 5/2(2x+5)-6x=19/2 | | 2(3.1x-0.87)=94.36 | | 2(3.1x-0.89)=94.36 | | 2(3x-1)=94 | | 1/156^x=4 | | 4=156^x | | 6.1+1.3n=3.11 | | -105=3+3x | | 4(x-5)-8x=8 | | 2x(3x-5)-1=-7(x-1)+x-4 | | 8(3+2z)=36 | | 4+d=10 | | R+d=10 | | 5x^2=−560 | | 3c+9=18 | | 9y-17=-19 | | 2x(3x-5)-1=-7(x-1+x-4 | | 3/4a+a=21 | | 1-8u=-15 | | 4y+12(5)=-16, | | 4y+12(-6)=-16, | | 1.32-y+0.63y=8.50 | | 3d=4d-4 | | 4c=3c+3 | | -1ส่วน6y=-8 | | (5/8)w=20 |