If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+90x-81=0
a = 25; b = 90; c = -81;
Δ = b2-4ac
Δ = 902-4·25·(-81)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90\sqrt{2}}{2*25}=\frac{-90-90\sqrt{2}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90\sqrt{2}}{2*25}=\frac{-90+90\sqrt{2}}{50} $
| -18-8x=18-2x | | 6x^-19x+10=0 | | -28-12x=-8x | | 4(2x+5)=8x+54 | | 5x-9x+4x=0 | | 8w^2+2=0 | | 4r^2+3r+2=0 | | 0=16t^2+76+20 | | 8u^2-6u+6=0 | | 9q^2-9=0 | | 8r^2-3=0 | | 0=16t^2+78+20 | | 4x-36=6 | | 1-2x+2x=13x | | 5z^2+2z+4=0 | | 37-9=hX4 | | 27.04=5g+3.79 | | (X+1)(x-2)=3x | | 0=16t^2+78+30 | | 10x2=490 | | -4(x-2)=(-2+x) | | 11/x+3/4=5/3 | | 2.3x-19=27 | | {x}+5=18 | | 5x^2+2+9=0 | | 5x^+2x+9=0 | | 9p^2+6p+9=0 | | 279+e+62=498 | | 7/9x-5/5=7/8 | | 3q^2-5q-8=9 | | 5z+z+2=0 | | 33+2x=16+7x |