If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+80x+61=0
a = 25; b = 80; c = +61;
Δ = b2-4ac
Δ = 802-4·25·61
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-10\sqrt{3}}{2*25}=\frac{-80-10\sqrt{3}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+10\sqrt{3}}{2*25}=\frac{-80+10\sqrt{3}}{50} $
| 31=a(5-1)7 | | 10+12z=3z-17 | | 1+6x+3x+8=180 | | 19n=-13+20n | | -f-16f+12=-16f-5 | | 2a-2=-3a+3 | | 5v+4v=-18 | | -0.4x=0.44 | | 56+3x+1=180 | | -4v-5=2-3-5v | | 2x-7-3x-9=6x-7x-19 | | 360+1/6n=570 | | 90+x+(x-52)=180 | | 0.60n+7.50=16.50 | | -44p-8=-36 | | x-1/6x=105 | | 37=2a+15a+3 | | 13-2x=x+1 | | 0=16x² | | 10-2n=28 | | 2x^2-2=126 | | 5x^2+8=500 | | -2x=9+4x | | 28/3=14/3x | | 6-2/3x(x+15)=4x | | 7x-11-2x=9x-8 | | 2a^2+7a-4=-7 | | 5x-1=23-4x | | 3v+10=8v+2 | | -5(n+7)+10(n+13)=8n-3n | | 7x+4+6x+12=180 | | x2+4x+29=0 |