If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+50x+12=0
a = 25; b = 50; c = +12;
Δ = b2-4ac
Δ = 502-4·25·12
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{13}}{2*25}=\frac{-50-10\sqrt{13}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{13}}{2*25}=\frac{-50+10\sqrt{13}}{50} $
| 16^x2+24x+9=0 | | n/7=77 | | 0=-20x^2-50x+200 | | x^2/3=1/25 | | 0=3u^2-2u-7 | | 5x²-7x-6=0 | | 5x²-7x-6x=0 | | 2/9x-10=80 | | a2+4a=96 | | (x+8)(2x÷5)=0 | | x+2x+10=0 | | 9y-(4y-y)=24 | | 3x^2-10x+75=0 | | X+2x+(5x-12)=180 | | f+19-14=19 | | 25.x=36+64 | | |f+19|-14=19 | | 16.x=64 | | 12y+12=4y-16 | | X2-x-25200=0 | | 14y-14=22 | | 5x=-3x+53 | | Y=x+1/x | | 1120000/1600000=x/470000 | | 4x+4=x | | X(.3x)=8000 | | 3d=4d–2 | | 3x²-60x-270=0 | | 11x-1=7x+6 | | q-5=9 | | p-9=34 | | x²-6=138 |