If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+4410x=0
a = 25; b = 4410; c = 0;
Δ = b2-4ac
Δ = 44102-4·25·0
Δ = 19448100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19448100}=4410$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4410)-4410}{2*25}=\frac{-8820}{50} =-176+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4410)+4410}{2*25}=\frac{0}{50} =0 $
| (4x+120)=3/5 | | x(2-5x)(7+x)=0 | | 9=3(g–5) | | 8x-51+6x-25=180 | | 2x3+30x=0 | | 14=(-7/2)x | | x*0.8=0.04 | | -2(5t-4)+5t=8t-6 | | 9-3600/x^2=0 | | (2/7)x+(3/7)=-(3/7) | | x+(x+90)=250 | | 14=n(n-3)/2 | | 2.33333333333c=2.1 | | 3x+31/4=9 | | x(4x-2)+2(x+10)=29 | | 2x+53/7=9 | | 20-2400x^2=0- | | 20-2400/x^2=0 | | -4(4x-6)=-8 | | 6y-15=89 | | 20-2400x^-2=0 | | 3+-2y*2+4y=6 | | 4x+120=3/5 | | 2r-10r=56 | | 10x+3=-3+12x | | 3x/7=15/28 | | -5(3x+10)=-200 | | (5x+2)(x−3)−x^2+29=(2x−9)^2−1/23 | | x^-x-20=0 | | 8t=2t+5 | | 3x/4-3=4(3x-1) | | 5-8(2n)=-75 |