If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+40x=0
a = 25; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·25·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*25}=\frac{-80}{50} =-1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*25}=\frac{0}{50} =0 $
| 11=v/2− –9 | | 3n+6=7n+5 | | 2(3x+5)=5x-1 | | 15-(7+3x)=16-(4x-1) | | 1.2b=8.4 | | (X+38)+(2x+1)=180 | | 1/4x1/8=7/8+1/2 | | 8.4=0.4(3.2+h) | | q-3=4 | | x/100=12/25 | | 4(2x+16)=14 | | 15(2x-10=30 | | 10x^2=5x+30 | | 3b=2b+1 | | r/3=47 | | 1.5x+2.25x+3.375x=65 | | 4v-19-10v=12-24v+5 | | 13-z=4 | | 12-d=2 | | -45+1.5x=1.5 | | y´´+4y=0 | | 25x+9=19 | | 10=-8x-50+3x | | 2(2c-1)-6=2=2c+2 | | 4=w+3/4 | | -3/4x=8/64 | | 0.2d+0.22d=-0.84 | | (−35)=(−6x)−7−8x | | r-(-14)=-48 | | 24-16=4(x-8) | | -6=-5x-x | | s-$15=$15.38 |