If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+10-(12-8x)+4x-(30-8x)=(5x+1)2
We move all terms to the left:
25x^2+10-(12-8x)+4x-(30-8x)-((5x+1)2)=0
We add all the numbers together, and all the variables
25x^2-(-8x+12)+4x-(-8x+30)-((5x+1)2)+10=0
We add all the numbers together, and all the variables
25x^2+4x-(-8x+12)-(-8x+30)-((5x+1)2)+10=0
We get rid of parentheses
25x^2+4x+8x+8x-((5x+1)2)-12-30+10=0
We calculate terms in parentheses: -((5x+1)2), so:We add all the numbers together, and all the variables
(5x+1)2
We multiply parentheses
10x+2
Back to the equation:
-(10x+2)
25x^2+20x-(10x+2)-32=0
We get rid of parentheses
25x^2+20x-10x-2-32=0
We add all the numbers together, and all the variables
25x^2+10x-34=0
a = 25; b = 10; c = -34;
Δ = b2-4ac
Δ = 102-4·25·(-34)
Δ = 3500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3500}=\sqrt{100*35}=\sqrt{100}*\sqrt{35}=10\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{35}}{2*25}=\frac{-10-10\sqrt{35}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{35}}{2*25}=\frac{-10+10\sqrt{35}}{50} $
| 2/3-1/4y=2/5 | | x/4+3x/2-x/6=1 | | X/3+7=2x-4 | | 2a×a-3a+1=0 | | x=5+3x+13 | | X/2+1=2x | | 3x+5=5-11 | | 7(x-1)+2=3(x+1) | | 2x-x/6=5/2 | | -25xx=5 | | 9/10=w/15 | | 6x=39=14X-41 | | -79=18x | | 2(2x+4)=18 | | x=20=5x | | |x^2-9|=7 | | 2x+1=9x+8 | | (n-2)+90+n=180 | | (n-2)+n+n=180 | | 2x-1=9x+8 | | 6x+9=10x+1 | | 3x+5(x-2)=4x+6/ | | 1/x-3+1/x-7=1/x-1+1/x-9 | | A=2x3-3x2-8x-3 | | 40=40t-5t^2 | | -6=u-3/5 | | 9x=x²-8 | | 5(x+1)-2(2-x)=10-(2x-12) | | 3c^2-10c+4=0 | | X1=4x-70 | | 2x+10-4x=6-4x+4 | | -1+9a=80 |