25x+43=(x-1)(5x+6)

Simple and best practice solution for 25x+43=(x-1)(5x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25x+43=(x-1)(5x+6) equation:



25x+43=(x-1)(5x+6)
We move all terms to the left:
25x+43-((x-1)(5x+6))=0
We multiply parentheses ..
-((+5x^2+6x-5x-6))+25x+43=0
We calculate terms in parentheses: -((+5x^2+6x-5x-6)), so:
(+5x^2+6x-5x-6)
We get rid of parentheses
5x^2+6x-5x-6
We add all the numbers together, and all the variables
5x^2+x-6
Back to the equation:
-(5x^2+x-6)
We add all the numbers together, and all the variables
25x-(5x^2+x-6)+43=0
We get rid of parentheses
-5x^2+25x-x+6+43=0
We add all the numbers together, and all the variables
-5x^2+24x+49=0
a = -5; b = 24; c = +49;
Δ = b2-4ac
Δ = 242-4·(-5)·49
Δ = 1556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1556}=\sqrt{4*389}=\sqrt{4}*\sqrt{389}=2\sqrt{389}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{389}}{2*-5}=\frac{-24-2\sqrt{389}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{389}}{2*-5}=\frac{-24+2\sqrt{389}}{-10} $

See similar equations:

| 2.50-1.00t=15.00t | | -5n=-95 | | 3249068+38098364x=328943984652.435 | | 2x^2+5x+21=0 | | Y+9=-3y | | 3x+3(6x-10)=55 | | 4x+90=104 | | 18-10x-26+17x=6 | | 2(4x−1)=6 | | 7(1-2m)=-105 | | 3x+2(6x-10)=55 | | 4x+104=90 | | 2g-14=46-13g | | F(x)=155000(1+.08) | | 5(3b+4)=95 | | 5.16=4m | | p/3+3=1 | | 1/75+x=2/15 | | 152=73.592+3.876r | | 2(4-a)=-2 | | 6+5(3x+19)=221 | | 2x+(x-5)=4 | | 53-0.1•t=D(t) | | 88=2(-5n+4) | | 5x+7(4x-21)=183 | | 11c=143 | | 4(3p+3)=48 | | 6(4r-7)=126 | | 7-3x=-8x | | -4(3n+3)=60 | | 8c+4(c+3)=8 | | (t)=80t-16t^2+3.5 |

Equations solver categories