If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25r^2+65r-140=0
a = 25; b = 65; c = -140;
Δ = b2-4ac
Δ = 652-4·25·(-140)
Δ = 18225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18225}=135$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-135}{2*25}=\frac{-200}{50} =-4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+135}{2*25}=\frac{70}{50} =1+2/5 $
| 10.5x+5=68x | | 10.5x+5=68 | | 1.5(x+3)=0.5+4.5+x | | D^4y-2D^3y-15D^2y=0 | | 16+13y=20-y | | 50x+20x-25+100x+35=9800 | | x(50)+x(20)-25+x(100)+35=9800 | | x+x-25+x+35=9800 | | 3x-25+35=9800 | | x+5-4x=50 | | x+4x-5=50 | | 4(2y+9)=28 | | Y=2x^-10x+13 | | 2(t+1)=3+ | | F(x)=-4x^+4x-2 | | 7x+14=15x-4=180 | | 15x-4=62 | | 7x+14=62 | | 15x-4=118 | | 7x+14=118 | | 8-5x=6-x | | 7x+14=15x-4=118 | | 7x+14=15x-4=62 | | 9(6+m)=-12 | | 16y+2y=7 | | -0.10(79)+0.95x=0.05(x-14) | | 0.3*x=54 | | 74-m=1850 | | 74+m=1850 | | 12.5=-1.5+(b/0.1) | | (11+x)*(3/4)=27 | | (11+x)*(3.4)=27 |