If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25q^2+15q+1=5q
We move all terms to the left:
25q^2+15q+1-(5q)=0
We add all the numbers together, and all the variables
25q^2+10q+1=0
a = 25; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·25·1
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-10}{50}=-1/5$
| z+10/6=90 | | -2/3z=8 | | 3(x-2=4(x-1)-6 | | 3=7(b-2)+17* | | 3y2+7y+3=-y2 | | 3x30+x=10+2x+5x+2 | | 7x-11.1=11.3 | | -6(f-87)=12 | | 1/3y+2/3=6/3 | | 4x+2.7=11.1 | | 20k-60=5k^2 | | 4(p-4)=−18 | | 3(k+6)^2-1=161 | | -6(f-87)=-12 | | 8x+40=13x | | q/2-7=9 | | 1/2(2g-4)=-7 | | 13x+15=56 | | 4(p-4)=-18 | | 6w2-11w+12=6w | | 36=3(h+45) | | -5s=-50 | | 4b2-4b+7=6 | | 67/100=x/40 | | 14c+196=243 | | A=(10+-1r)+(20+1r) | | 3=6-4m | | 81+100=c2 | | 2x+5=4x-19 | | 5x–7=2–4x | | -3=4x/5 | | A=(10+1r)+(20+-1r) |