If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25c-10c^2=0
a = -10; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·(-10)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*-10}=\frac{-50}{-20} =2+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*-10}=\frac{0}{-20} =0 $
| r4+7=10 | | 3.14=c/6 | | 24/q=24 | | Q(r)=3r^2-15+18 | | -4/7x+1/2=-5/14 | | 9x-18-12=4x-20+3x | | 24/q=6 | | 1/3(x-7)=4x+2 | | 20=5-3x= | | x=3+4+4*15 | | 60+2x-100=0 | | (5x+3)+(6x-15)+x=180 | | 25x+55=40x+20 | | 10(3x-9)=60 | | 0.45=m-9=0.9 | | 3u^2+17u+20=0 | | 15x-25=3x-7 | | 3u^2+17u+20=9 | | 90=5y+10 | | 2(5x-8)=24 | | n/4=-18 | | -8(4x+3)-2=26-6x | | x/30=0.7 | | 77x+x=827 | | -9=y+8 | | g-3=7;9=11 | | 2(3x+2)=64 | | 3 u= 8 | | 5x+10(80-x)=660 | | 2(x-9)-(12-5x)=6x | | 3x2–15x=0 | | 10z^2+33z-7=0 |