If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25=81x^2
We move all terms to the left:
25-(81x^2)=0
a = -81; b = 0; c = +25;
Δ = b2-4ac
Δ = 02-4·(-81)·25
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*-81}=\frac{-90}{-162} =5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*-81}=\frac{90}{-162} =-5/9 $
| 5x+9-7x=8x-9x-2x-3x+5x | | 3x-(-11)=5 | | 3(6m-2)=5(2m-2) | | 26=81x^2 | | 20+-w/32=18 | | 2x=1/3=7 | | 3(2z-4)=-6(2-z0 | | 144=2x+24 | | 13k-3(k+1)=2k+1 | | 3x-25=2x+3 | | 2(x^2)×5(x^2)=0.001(10^3-x)^2 | | Y=0.5x- | | 5x-9=7x-31 | | 6x-5+5=10x+6 | | 5w+8=83 | | 3(x+4)=4x+15 | | p-3|1/6=-2|1/2 | | X+(x-10)=54 | | -16t^2+32t+40=0 | | 1/3(b+6)=5/3b+8 | | 5(x-4)-25=50 | | -70=-2(n+2)+8(-4n-4) | | 3(x+5)=5+11 | | 210t-68=56=1164 | | 7x-8=3x+18 | | 16-7x=-4(2x-2) | | 6x-(3+8)=16x | | (2x+3)-x=8 | | 112+37x+3x^2=0 | | 3x+7-x=19+x | | 3a+8+aa=3 | | 18=-6r+4=r |