25=8+n2

Simple and best practice solution for 25=8+n2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25=8+n2 equation:



25=8+n2
We move all terms to the left:
25-(8+n2)=0
We add all the numbers together, and all the variables
-(+n^2+8)+25=0
We get rid of parentheses
-n^2-8+25=0
We add all the numbers together, and all the variables
-1n^2+17=0
a = -1; b = 0; c = +17;
Δ = b2-4ac
Δ = 02-4·(-1)·17
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*-1}=\frac{0-2\sqrt{17}}{-2} =-\frac{2\sqrt{17}}{-2} =-\frac{\sqrt{17}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*-1}=\frac{0+2\sqrt{17}}{-2} =\frac{2\sqrt{17}}{-2} =\frac{\sqrt{17}}{-1} $

See similar equations:

| 20=1/5m | | -4K=-5k+10 | | X+3x+42=180 | | y=300+6 | | -3/4r=7/5 | | 24-6w=10w | | 4x-18/2=11 | | 9t=10+10t | | 18.06-164+0.2r=-1.58-14.8r | | -2x-5=-2x+(1/3) | | 3(x-4=2x+6 | | 0.2(x-15)=0.8 | | 2(m-3)=-10 | | -1-7(6x+5)=174 | | 8=3x/3 | | 4c-9=7c+12 | | 7x-9=-52 | | 17=-3n-10 | | -1/4y=6 | | 3(x−5)+8(x−5)=22 | | F(x)=45/11x-28 | | 3e+6=39 | | 1^2y-10^y+2=0 | | 5n^2+12n+7)=0 | | 1/729=243^(5t-2) | | 25x+121=0 | | -1/3h=10.5 | | 10=4q–10 | | 25=30y-9y^2 | | 7x-4=20+20+3x | | 8^2y-10*(8^y)+16=0 | | x/0.02=10 |

Equations solver categories