If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25=(2d+24)(5-d)
We move all terms to the left:
25-((2d+24)(5-d))=0
We add all the numbers together, and all the variables
-((2d+24)(-1d+5))+25=0
We multiply parentheses ..
-((-2d^2+10d-24d+120))+25=0
We calculate terms in parentheses: -((-2d^2+10d-24d+120)), so:We get rid of parentheses
(-2d^2+10d-24d+120)
We get rid of parentheses
-2d^2+10d-24d+120
We add all the numbers together, and all the variables
-2d^2-14d+120
Back to the equation:
-(-2d^2-14d+120)
2d^2+14d-120+25=0
We add all the numbers together, and all the variables
2d^2+14d-95=0
a = 2; b = 14; c = -95;
Δ = b2-4ac
Δ = 142-4·2·(-95)
Δ = 956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{956}=\sqrt{4*239}=\sqrt{4}*\sqrt{239}=2\sqrt{239}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{239}}{2*2}=\frac{-14-2\sqrt{239}}{4} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{239}}{2*2}=\frac{-14+2\sqrt{239}}{4} $
| Y=25+14x-14=14x+9 | | Y=25+14(x-1) | | v+6v=56 | | 36=9v-5v | | 6+3×m=5×m-1 | | 90=(4x+6)+(6x+4) | | x/12=42/63 | | 9/x=88/24 | | /5t-4=11 | | 1/3x+1/6x=4 | | (4500-z)/2500=0.25 | | (7000-z)/2500=0.25 | | 8x+100=9x+81 | | (600-300)/500=x | | (7000-z)/2000=0.25 | | (7000-z)/4500=0.25 | | (4500-z)/2000=0,25 | | 4500-z)/2000=0.25 | | 4500-z)/2000=0,25 | | 6x+7/3x+7=4x+5/2x+3 | | 19x+13–12x+3=13 | | 2x+4*5=12 | | 4−x/4−2x+5/6=−1 | | (4500-z)/2000=0.25 | | (7000-z)/5000=0,25 | | 4−x 4−2x+5 6=−1 | | (z-2000)/12000=0.25 | | (x-4)2-(x-5)2=9 | | (3.23+x)/2=3.2 | | x+2x+6=70 | | 5c=22+c | | -3+8=24-5x |