25/5x=64-32x

Simple and best practice solution for 25/5x=64-32x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25/5x=64-32x equation:



25/5x=64-32x
We move all terms to the left:
25/5x-(64-32x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
25/5x-(-32x+64)=0
We get rid of parentheses
25/5x+32x-64=0
We multiply all the terms by the denominator
32x*5x-64*5x+25=0
Wy multiply elements
160x^2-320x+25=0
a = 160; b = -320; c = +25;
Δ = b2-4ac
Δ = -3202-4·160·25
Δ = 86400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{86400}=\sqrt{14400*6}=\sqrt{14400}*\sqrt{6}=120\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-120\sqrt{6}}{2*160}=\frac{320-120\sqrt{6}}{320} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+120\sqrt{6}}{2*160}=\frac{320+120\sqrt{6}}{320} $

See similar equations:

| 45x+8=45x+9 | | 7t-4=4+4t | | -7=3x-11 | | 5x^+10=190 | | -15t^2+10t=0 | | .0.5(10+12n)=0.33(15n+15) | | 13/6•m=1/3 | | 13/6m=1/3 | | -4(-4-24)=8(2f+3) | | 33=12r-(r+11) | | 55=177-y | | 40t-4.9t^2=50 | | 40t-4.9^2=50 | | 36/5x=1 | | 22/3x=1 | | 1|2x+3=-(x+1) | | 7(3)+3(x)=78 | | 54=3/v | | (6x+44°)+(-10x+65°)=117° | | x+x-5+3x+10=180 | | 2y+y-16+118=180 | | 2y+3y+45=180 | | 5x-3=7x+5. | | Sx4+39=127 | | 3+x/5=6+x/2 | | x/3=31/6 | | 7+4b=b=3 | | s2-1=2 | | 2x+5x+15x=22x | | 4x÷2=16 | | (2⋅3)2−5=x5 | | 8.50*3=x |

Equations solver categories