25(n-1)+100=5(2n+1)

Simple and best practice solution for 25(n-1)+100=5(2n+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25(n-1)+100=5(2n+1) equation:


Simplifying
25(n + -1) + 100 = 5(2n + 1)

Reorder the terms:
25(-1 + n) + 100 = 5(2n + 1)
(-1 * 25 + n * 25) + 100 = 5(2n + 1)
(-25 + 25n) + 100 = 5(2n + 1)

Reorder the terms:
-25 + 100 + 25n = 5(2n + 1)

Combine like terms: -25 + 100 = 75
75 + 25n = 5(2n + 1)

Reorder the terms:
75 + 25n = 5(1 + 2n)
75 + 25n = (1 * 5 + 2n * 5)
75 + 25n = (5 + 10n)

Solving
75 + 25n = 5 + 10n

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-10n' to each side of the equation.
75 + 25n + -10n = 5 + 10n + -10n

Combine like terms: 25n + -10n = 15n
75 + 15n = 5 + 10n + -10n

Combine like terms: 10n + -10n = 0
75 + 15n = 5 + 0
75 + 15n = 5

Add '-75' to each side of the equation.
75 + -75 + 15n = 5 + -75

Combine like terms: 75 + -75 = 0
0 + 15n = 5 + -75
15n = 5 + -75

Combine like terms: 5 + -75 = -70
15n = -70

Divide each side by '15'.
n = -4.666666667

Simplifying
n = -4.666666667

See similar equations:

| 2x-33=83 | | 2x^4+x^2-15=0 | | -10x^4-22x^2-4=0 | | 2x^3(x-8)=3x^2(x-2) | | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-3-3-3-3-4=-1-1-1-1-1a | | 3x-4+2x=9x-2 | | 5x-3(6x-4)=-79 | | (2x^2-8x)+(2y^2+10y)+2=0 | | ma-c=e | | 6x+8y=84 | | s^2-10s+80=80 | | q^2+q-35=21 | | 7(X-2)-5X=-3 | | 4x-7+3z-10= | | 13-(4a-19)=(36+4a)+(19-6a) | | (4x-25)+BAD=180 | | n^2+8n=48 | | -5(y+4)(2*y)(6y-18)=0 | | -7x+4(2x+8)=25 | | 2c+d+5c+6d= | | 2(5x+8)=-37+23 | | (14a-16)-(9+7a)=-2a | | 5x+10y=29 | | 18-3y=13 | | 0+50-60-60+10= | | x+99=6x+44 | | x^4-12x^3+48x^2-64=0 | | 7x^2+8x=-4 | | 5p-2=17 | | y+10+3x-20=180 | | 3a+4-a=2a+4 | | 13x+9=8x-5 |

Equations solver categories