If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-72x+48=0
a = 24; b = -72; c = +48;
Δ = b2-4ac
Δ = -722-4·24·48
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-24}{2*24}=\frac{48}{48} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+24}{2*24}=\frac{96}{48} =2 $
| x/2=5,4 | | z-116/7=134/5 | | 1/2(x+2)=6.5 | | 24+15-16-9x=50 | | (5+2)÷x×x×10-3(5+2)+1÷10=2 | | 5w-11w=24 | | 5.25n=-31.5 | | 147.6=1/2m*9 | | 147.6=1/2m3^2 | | 3x+9=4/3x+14 | | 3(-2x+7)+4x=15 | | 2x+(1-x)7=5 | | w+10-4= -7 | | -9(m+41)=-90 | | 13s-31=2s-4 | | 15-3x-3=12-5x | | 17(2-x)-5(x+12)/1-7x=8 | | .23z=2.07 | | 8*3^5+2x=648 | | 81^x-8=1/4 | | X^2-√5x-30=0 | | 10^4-x=1/100 | | (4x^2-27x+19)=-7x+10 | | (1/4)^12-x=64 | | (6x^2+13x-15)=0 | | 3+(2x—7)=5—2(3x–4) | | (4x^2+5x+1)=0 | | (x^2+9x-3)=6x-5 | | (x^2+20x+45)=4x-3 | | 2^2x+3=8 | | 6-3(5t-13)=-30 | | 2y+200=42 |