If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+16x=0
a = 24; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·24·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*24}=\frac{-32}{48} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*24}=\frac{0}{48} =0 $
| 11−3x+5x=x+5 | | -8x-12=-84 | | n/5=6=-11 | | 1/8x=3/24 | | (4x-6)+(4x-6)+(2x)=180 | | z–4=-12z–4=-12 | | 7+4(y-8)=24 | | 4=3x/2-2 | | 15=2a+6 | | X^2+14u+24=0 | | X^2+y^2=58 | | 0.04=4d/4+12 | | x-2-8=12 | | 3c-9=-9c+3 | | X^2-31u=0 | | 4+1/2t=34 | | -8-12x=13x-5+22 | | 6n+6=-8n-36 | | 4a^2-5a-35=9 | | 6m2−12=0 | | 8x2-32x2=0 | | -7x-16=20-3x | | 2(4x-7)+2x=136 | | 0=-16t^2+169 | | X^2+5w+6=0 | | 4×(x+1)=12 | | X^2-15h-16=0 | | 2(4x-7)x2x=136 | | x²=7,84 | | H^2-15h-16=0 | | -4(x)=1/2x-14 | | (4x-7)x2x=136 |