24=(x+1)(3x+1)

Simple and best practice solution for 24=(x+1)(3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24=(x+1)(3x+1) equation:



24=(x+1)(3x+1)
We move all terms to the left:
24-((x+1)(3x+1))=0
We multiply parentheses ..
-((+3x^2+x+3x+1))+24=0
We calculate terms in parentheses: -((+3x^2+x+3x+1)), so:
(+3x^2+x+3x+1)
We get rid of parentheses
3x^2+x+3x+1
We add all the numbers together, and all the variables
3x^2+4x+1
Back to the equation:
-(3x^2+4x+1)
We get rid of parentheses
-3x^2-4x-1+24=0
We add all the numbers together, and all the variables
-3x^2-4x+23=0
a = -3; b = -4; c = +23;
Δ = b2-4ac
Δ = -42-4·(-3)·23
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{73}}{2*-3}=\frac{4-2\sqrt{73}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{73}}{2*-3}=\frac{4+2\sqrt{73}}{-6} $

See similar equations:

| 3x+2(-x-5)=35 | | 6x+4=8x-8=180 | | 5y+1=-4 | | 3x+10=4x-10=180 | | 4(-x/2+5)=11 | | 12-2w=16 | | 24=(x+1)+(3x+1) | | 7p^2-7p-(7p)=0 | | 12.5=4x•2.5 | | 5/2.x=55 | | g/12=7 | | m/8=4/2 | | 11(y-2)=77 | | -x-5+5=2(2x-1)-3 | | 8x–4–x=3x+4x–8 | | 2x-13+x+60=180 | | x+107+x+79=172 | | -9+2x=8+7(3-6x) | | (2x-1)(x+3)=2x | | 3(x-8)=2(x+10 | | 100x+8.50=75x+6 | | 5.37=3x+1.9 | | (10x+2)=-14 | | 10=3(f-17)—7 | | 90(x)=x/15 | | 6-6d+6-7=2d-2 | | 5+4(1+7x)=7x-26 | | 2(2u-7)=17 | | g/15=8 | | 8-s=20 | | 2/5+5y=5/2 | | (10x+2)-3=-11 |

Equations solver categories