240/(x+50)=240/x-5

Simple and best practice solution for 240/(x+50)=240/x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 240/(x+50)=240/x-5 equation:



240/(x+50)=240/x-5
We move all terms to the left:
240/(x+50)-(240/x-5)=0
Domain of the equation: (x+50)!=0
We move all terms containing x to the left, all other terms to the right
x!=-50
x∈R
Domain of the equation: x-5)!=0
x∈R
We get rid of parentheses
240/(x+50)-240/x+5=0
We calculate fractions
240x/(x^2+50x)+(-240x-12000)/(x^2+50x)+5=0
We multiply all the terms by the denominator
240x+(-240x-12000)+5*(x^2+50x)=0
We multiply parentheses
5x^2+240x+(-240x-12000)+250x=0
We get rid of parentheses
5x^2+240x-240x+250x-12000=0
We add all the numbers together, and all the variables
5x^2+250x-12000=0
a = 5; b = 250; c = -12000;
Δ = b2-4ac
Δ = 2502-4·5·(-12000)
Δ = 302500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{302500}=550$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-550}{2*5}=\frac{-800}{10} =-80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+550}{2*5}=\frac{300}{10} =30 $

See similar equations:

| y-21.19=-14.19 | | 18-6x=8+4x= | | 6x+9x-23=60-8x | | 10/y+3=4/y-1 | | 13-4x3+2=x | | 3.4y=2.4 | | y+3=y-1 | | 3.4=2.4x | | 3.4x1=2.4x | | (x−7)(x+2)=22 | | 20d+6=6 | | x+5=-(5x+5) | | -6p+7=3(2p-30-4(-10+4P) | | 6(7a+4)+a=-277 | | 6x-(4+x)=-7+4x+8 | | 6x+1=3x-14 | | 4x+15/7=3 | | -93=3(-6k-7) | | -12-2x=3 | | 30+6P=7p+6-5 | | 48+3x=12x+16= | | 1/3(9x+3)=-3x+1 | | 2n-6=28 | | 4=-2-2x | | -6+7(-5n-7)=-90 | | 72374786247263724a*62627=-31 | | 10+5h=15+3h | | 2,2=z-1.1 | | -2V-2=-3-2v | | 4x^2=(5)(4x-5) | | 8-4m-12=2m+4m | | 3x-17=2x=3=25 |

Equations solver categories