24-5x=4-8x(x+5)

Simple and best practice solution for 24-5x=4-8x(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24-5x=4-8x(x+5) equation:



24-5x=4-8x(x+5)
We move all terms to the left:
24-5x-(4-8x(x+5))=0
We calculate terms in parentheses: -(4-8x(x+5)), so:
4-8x(x+5)
determiningTheFunctionDomain -8x(x+5)+4
We multiply parentheses
-8x^2-40x+4
Back to the equation:
-(-8x^2-40x+4)
We get rid of parentheses
8x^2+40x-5x-4+24=0
We add all the numbers together, and all the variables
8x^2+35x+20=0
a = 8; b = 35; c = +20;
Δ = b2-4ac
Δ = 352-4·8·20
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-3\sqrt{65}}{2*8}=\frac{-35-3\sqrt{65}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+3\sqrt{65}}{2*8}=\frac{-35+3\sqrt{65}}{16} $

See similar equations:

| -39=−43+y/11​ | | 3a+10=6a-5 | | 4x+2=6-x5x+2=6 | | b/1-2.7=-5.3 | | (12x-8)-104=180 | | -4+62/5+(-2.7)=x | | 4x-30=3x+2 | | -y+y=-26 | | 3.48=−0.9z+3.3 | | 2x+1=4x-30 | | 121/6*(12z-18)=2z-3 | | 1/4m+5=3/8+4 | | -3=n+2/5 | | (4x+17)+57=90 | | 1/2(4x-44)=5x | | 5m+2m-4m=4m | | 3(4x-5)=15x-8-3x-7 | | 7/4×+17=y | | 7/4×+17=u | | 2x-10=180+2x+30 | | 3(b+3)−4(−2+b)=19 | | 66.6(6k-30)+k=100 | | 191-69x=180 | | 9x+15=5x-23 | | -5x=7x+48 | | 6−3j=2j−24 | | 186+61x=180 | | (3x)/2+5=10-x | | 4x-8=2x-21 | | 3k+(k-3)=7 | | 6x+11=19x-6 | | x/12=9/17 |

Equations solver categories