If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24-1/3(4x)=18-1/30(3x)
We move all terms to the left:
24-1/3(4x)-(18-1/30(3x))=0
Domain of the equation: 34x!=0
x!=0/34
x!=0
x∈R
Domain of the equation: 303x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/34x-(-1/303x+18)+24=0
We get rid of parentheses
-1/34x+1/303x-18+24=0
We calculate fractions
(-303x)/10302x^2+34x/10302x^2-18+24=0
We add all the numbers together, and all the variables
(-303x)/10302x^2+34x/10302x^2+6=0
We multiply all the terms by the denominator
(-303x)+34x+6*10302x^2=0
We add all the numbers together, and all the variables
34x+(-303x)+6*10302x^2=0
Wy multiply elements
61812x^2+34x+(-303x)=0
We get rid of parentheses
61812x^2+34x-303x=0
We add all the numbers together, and all the variables
61812x^2-269x=0
a = 61812; b = -269; c = 0;
Δ = b2-4ac
Δ = -2692-4·61812·0
Δ = 72361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{72361}=269$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-269)-269}{2*61812}=\frac{0}{123624} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-269)+269}{2*61812}=\frac{538}{123624} =269/61812 $
| 30x+14=22x+24 | | 110=39.53+0.25x | | 5n-12=n-3n+4 | | 9(s-82)=63 | | 160+20=x | | 174+10x-6x=12+10x | | 4(t+7)=88 | | -y=3y | | (x^2)+12x=-60 | | n^2+12n=-60 | | x+3x-13=7(x9) | | 8+-4z=-56 | | z/7+2=3 | | x-4x=120+ | | 6^3x=7776 | | r=-0,89 | | r=0,89 | | -39=q/5+-46 | | (4x-24)=x | | 7(k+2)=98 | | n/2=-20 | | w/5-14=14 | | -3+2x=-(7-2x)+4 | | f/3+19=25 | | 25=y/4-9 | | 7f+20=35+13 | | 10=20-2z | | G(0)=1/2v-7 | | 90-x=5(15) | | r/7+69=79 | | -4=23x+10 | | P=4h^-48h+744 |