If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24-1/20(3x)=16-1/20(2x)
We move all terms to the left:
24-1/20(3x)-(16-1/20(2x))=0
Domain of the equation: 203x!=0
x!=0/203
x!=0
x∈R
Domain of the equation: 202x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/203x-(-1/202x+16)+24=0
We get rid of parentheses
-1/203x+1/202x-16+24=0
We calculate fractions
(-202x)/41006x^2+203x/41006x^2-16+24=0
We add all the numbers together, and all the variables
(-202x)/41006x^2+203x/41006x^2+8=0
We multiply all the terms by the denominator
(-202x)+203x+8*41006x^2=0
We add all the numbers together, and all the variables
203x+(-202x)+8*41006x^2=0
Wy multiply elements
328048x^2+203x+(-202x)=0
We get rid of parentheses
328048x^2+203x-202x=0
We add all the numbers together, and all the variables
328048x^2+x=0
a = 328048; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·328048·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*328048}=\frac{-2}{656096} =-1/328048 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*328048}=\frac{0}{656096} =0 $
| 1/4(t-5)=-8 | | x+17=2x+17 | | 84x-12x^2=0 | | -2/5t=-12 | | ×=70=10+2y | | 11n-3n=48 | | 3x+104=6x+98 | | 1/7(x+3)=7 | | 55.1=x+1.90x | | 3x/14-21x/32=11/8 | | 0.5(2-6x)+2x=13 | | 3x+104=60+6x+38 | | 52=2x+4(-3x-17) | | 3/26+s-8=2s-23 | | 15x-9-2x-12+5x+6=0 | | 24,800=P(1+0.03x8) | | -6x-2(3x+18)=-96 | | -15+w=-13 | | 7(x-4)=1=22 | | 5(5x-5)=-25+5x | | X^2+(x+7)^2-120=0 | | 10x-5+2=32 | | 3u-44=-7(u-8) | | W^2+(w+7)^2-120=0 | | 12x+54=-7x-4(-5x+2) | | 9x^=33x-30 | | -2x-2(x+27)=-26 | | 10-y=-10-8-5y | | 9b=8b+5 | | 2j+5=-2j+5 | | 1/10(x+89)=−2(6−x) | | -7p-9=-6p |