24+0.44x=19/1.69x

Simple and best practice solution for 24+0.44x=19/1.69x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24+0.44x=19/1.69x equation:



24+0.44x=19/1.69x
We move all terms to the left:
24+0.44x-(19/1.69x)=0
Domain of the equation: 1.69x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.44x-(+19/1.69x)+24=0
We get rid of parentheses
0.44x-19/1.69x+24=0
We multiply all the terms by the denominator
(0.44x)*1.69x+24*1.69x-19=0
We add all the numbers together, and all the variables
(+0.44x)*1.69x+24*1.69x-19=0
We multiply parentheses
0x^2+24*1.69x-19=0
Wy multiply elements
0x^2+24x-19=0
We add all the numbers together, and all the variables
x^2+24x-19=0
a = 1; b = 24; c = -19;
Δ = b2-4ac
Δ = 242-4·1·(-19)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{163}}{2*1}=\frac{-24-2\sqrt{163}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{163}}{2*1}=\frac{-24+2\sqrt{163}}{2} $

See similar equations:

| 2/5(x-3)=1/5x+3 | | 2x+5=3-4 | | -6x+3=6-2x-4+1 | | 21=-16+g | | 6-3(3x-8)=30 | | 1+5m=-34 | | 11b-4=40 | | 2b – 4 = 2(2b + 5)  | | 2x-32=x+4 | | 2^3x+9=8^2x+1 | | (-18+p)1/2=2 | | 5x=2x-1=27 | | 3-6t=-69 | | -2a-16=20+10a | | 8x-82=6x-6 | | 9.6=1.64y | | 4,600/50=h | | 3/12=t/1 | | −x2−8x+2=0 | | 32x-62=12x+68 | | x=160+(.2*x) | | 7m-8=5m+4 | | x+(3×+30)=90 | | 48/16=20/16=d | | 41/2=11/2n;n= | | 5x+46=3x+124 | | 33=-2+x/5 | | 3​(x−3​)+10=2​(x+4​) | | 4x=12=3 | | 5s-6=39 | | 3/12=1/t | | x+2.9=1 |

Equations solver categories