24(1/3x-4)=24(1/8X+1)

Simple and best practice solution for 24(1/3x-4)=24(1/8X+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24(1/3x-4)=24(1/8X+1) equation:



24(1/3x-4)=24(1/8x+1)
We move all terms to the left:
24(1/3x-4)-(24(1/8x+1))=0
Domain of the equation: 3x-4)!=0
x∈R
Domain of the equation: 8x+1))!=0
x∈R
We multiply parentheses
24x-(24(1/8x+1))-96=0
We multiply all the terms by the denominator
24x*8x-96*8x+1))-(24(1+1))=0
We add all the numbers together, and all the variables
24x*8x-96*8x+1))-(242)=0
We add all the numbers together, and all the variables
24x*8x-96*8x=0
Wy multiply elements
192x^2-768x=0
a = 192; b = -768; c = 0;
Δ = b2-4ac
Δ = -7682-4·192·0
Δ = 589824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{589824}=768$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-768)-768}{2*192}=\frac{0}{384} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-768)+768}{2*192}=\frac{1536}{384} =4 $

See similar equations:

| 5/4x=6/5x+2 | | 6y+32=176 | | -6+u/2=-4 | | 7x6=5x+8 | | 8(x-4)-2=7(x-1 | | 1/4x-2=1/5+1 | | 8/x+1−3/2=2/3x+1 | | 1/4x-2=1/5x=1 | | (x+x*0.1)-(x+x*0.8)=-135000 | | (x+x*0.1)-(x+x*0.8)=135000 | | x-(x*0.7)=70 | | –9(x–7)=45 | | –9(p–7)=45 | | 6(s+8)=54 | | 6(s+8)=58 | | n=n*n-20 | | n=n^2-20 | | 5/3(-7x-3)=-4 | | n=n-20 | | 8/n=4/n-2/5 | | 7x+8x-3x=57+3 | | 9x-(5x+6)+14=2x | | C(q)=(6q+(2q/40))/q | | -4n-5=-3n+5 | | 2x−12=30 | | 2.4+4.5x=8.25 | | (2r+2)÷4=(3r-1)÷5 | | 50+(60)+x=180 | | 2r+2÷4=3r-1÷5 | | G(x)=5x+14 | | 0.27=3x | | 5x+10+8x+7x-30=180 |

Equations solver categories