If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x^2=17
We move all terms to the left:
23x^2-(17)=0
a = 23; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·23·(-17)
Δ = 1564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1564}=\sqrt{4*391}=\sqrt{4}*\sqrt{391}=2\sqrt{391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{391}}{2*23}=\frac{0-2\sqrt{391}}{46} =-\frac{2\sqrt{391}}{46} =-\frac{\sqrt{391}}{23} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{391}}{2*23}=\frac{0+2\sqrt{391}}{46} =\frac{2\sqrt{391}}{46} =\frac{\sqrt{391}}{23} $
| 2x+3(4x−1)=2(5x+3)+4x | | 1r=2r-2 | | 3/4y=72/4 | | 1=0.3x-0.9x-17 | | b/12=-5 | | 2^x+5=256 | | 2.3+10m=8.86 | | 7(7-5x)+7(8x+4)=14 | | 2x+9.5=18.5 | | 5x-19+3x-11=128 | | 102=14+3x | | x2-3=6 | | -2/5x+2=-1/5x+11 | | -17b=-255 | | -(x-3)-9=1 | | 1/7-x/7=-4/7 | | 9x-8+6x-6=256 | | H+h-3=35+3 | | -8b=152 | | 9b-1=30 | | 4-d=-(-4) | | -(x+3)=2(x+3) | | 4-3.2=m | | 25+.5x=60 | | 2x8x=12-8x | | X-11=2x-31 | | -24p=1/2p | | 3(x+1)@=14 | | 63/5=10/3x | | -80=-16r | | 9x-2+4=8 | | 4x-10/2=3x-5/4 |