23=9x2

Simple and best practice solution for 23=9x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23=9x2 equation:



23=9x^2
We move all terms to the left:
23-(9x^2)=0
a = -9; b = 0; c = +23;
Δ = b2-4ac
Δ = 02-4·(-9)·23
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{23}}{2*-9}=\frac{0-6\sqrt{23}}{-18} =-\frac{6\sqrt{23}}{-18} =-\frac{\sqrt{23}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{23}}{2*-9}=\frac{0+6\sqrt{23}}{-18} =\frac{6\sqrt{23}}{-18} =\frac{\sqrt{23}}{-3} $

See similar equations:

| 7(p-5)=34.3 | | -7j+-9j+16j-(-12j)=12 | | 6x-15+45=180 | | -8(x+3)+3(1-3x)=13 | | -5y+7=11 | | -124=2-7(3-3v) | | 3(z-3)+6z-1= | | (2w+1)(5)= | | t-(10)=50 | | -3(1x-8)-(1x+5)=23 | | X+x+5+x=20 | | 5x-3x+9=-1 | | 5(x-1)+x=6(x-2) | | -3(1x-8)-(1x+5=23 | | 6y+4y+2y-4y=16 | | 6s+22(2s+4=2(s-2)-4 | | 60x-12=6(10x-2) | | -178x+8=82 | | 42=5y+5 | | 3(x-9)=7(x+10)-4x | | 7x-4-9x+6=20 | | 15=-3(5p+10) | | 3(1-2x)+x-3=0 | | x+5=61 | | 5=1/2x+8+8*2 | | --6n-2n=16 | | -8(-7-3x)-5(x-8)=58 | | 91+44+a=180 | | 13a-6=15a+7 | | 5x+3x+40=180° | | 12=6y+10 | | x5-3=25 |

Equations solver categories