23=6+3LN(T+1)

Simple and best practice solution for 23=6+3LN(T+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23=6+3LN(T+1) equation:


Simplifying
23 = 6 + 3LN(T + 1)

Reorder the terms:
23 = 6 + 3LN(1 + T)
23 = 6 + (1 * 3LN + T * 3LN)
23 = 6 + (3LN + 3LNT)

Solving
23 = 6 + 3LN + 3LNT

Solving for variable 'L'.

Move all terms containing L to the left, all other terms to the right.

Add '-3LN' to each side of the equation.
23 + -3LN = 6 + 3LN + -3LN + 3LNT

Combine like terms: 3LN + -3LN = 0
23 + -3LN = 6 + 0 + 3LNT
23 + -3LN = 6 + 3LNT

Add '-3LNT' to each side of the equation.
23 + -3LN + -3LNT = 6 + 3LNT + -3LNT

Combine like terms: 3LNT + -3LNT = 0
23 + -3LN + -3LNT = 6 + 0
23 + -3LN + -3LNT = 6

Add '-23' to each side of the equation.
23 + -3LN + -23 + -3LNT = 6 + -23

Reorder the terms:
23 + -23 + -3LN + -3LNT = 6 + -23

Combine like terms: 23 + -23 = 0
0 + -3LN + -3LNT = 6 + -23
-3LN + -3LNT = 6 + -23

Combine like terms: 6 + -23 = -17
-3LN + -3LNT = -17

Reorder the terms:
17 + -3LN + -3LNT = -17 + 17

Combine like terms: -17 + 17 = 0
17 + -3LN + -3LNT = 0

The solution to this equation could not be determined.

See similar equations:

| X^3+5x^2-x-5=48 | | 4(x-2)=34 | | 4(2x-16)=2(2x+28) | | z+19=28 | | 6(4w+4)=-1 | | -2-(-8z-7)=-6(8z-5)+3 | | R=HA | | 0.5x+4.56=-0.14x+2.56 | | 13d-12d=8 | | A=HR | | 380=19(f-950) | | 2(5x-20)=80 | | 5(f-6)=-35 | | (3x+1)=28 | | 5(3x+15)=120 | | 10(s-5)=-156 | | 8+22=-5(5x-6) | | 0.2x-0.4(20-5x)=-0.8(x-5) | | 9u-7u=20 | | -0.2(n-3)=0.2(n-0.75) | | 2r-5=7 | | 6y-18=3(3y+4) | | 11y-y=10 | | 11-5(3-x)=4(x-4) | | 17x-11x=5 | | x(x-6x)=0 | | 4+2w=12 | | -3=(x+1)-3(x+6) | | 0.2x-8-5.4x=-0.8x+4 | | 1.6x-5x=x | | 4(7x-27)=11 | | 3(2x-12)=72 |

Equations solver categories