23/5x-8=-1.4x+16

Simple and best practice solution for 23/5x-8=-1.4x+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23/5x-8=-1.4x+16 equation:



23/5x-8=-1.4x+16
We move all terms to the left:
23/5x-8-(-1.4x+16)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
23/5x+1.4x-16-8=0
We multiply all the terms by the denominator
(1.4x)*5x-16*5x-8*5x+23=0
We add all the numbers together, and all the variables
(+1.4x)*5x-16*5x-8*5x+23=0
We multiply parentheses
5x^2-16*5x-8*5x+23=0
Wy multiply elements
5x^2-80x-40x+23=0
We add all the numbers together, and all the variables
5x^2-120x+23=0
a = 5; b = -120; c = +23;
Δ = b2-4ac
Δ = -1202-4·5·23
Δ = 13940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13940}=\sqrt{4*3485}=\sqrt{4}*\sqrt{3485}=2\sqrt{3485}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-2\sqrt{3485}}{2*5}=\frac{120-2\sqrt{3485}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+2\sqrt{3485}}{2*5}=\frac{120+2\sqrt{3485}}{10} $

See similar equations:

| -104+13x-4x=85 | | 4x-x-6=2x-4 | | 7x+2=71 | | -8z-4=-10z | | 0.5+p=02 | | 3/4(2x-8)+1/2x=-10 | | -2m-10=-m | | x/2=7.2=0.85 | | |3-2k|=-7 | | -1/2x+8=-11 | | 1/4(10/11-5x)-4/11=3/11 | | 7v-12=8v-7 | | 6f=5f+9 | | 11x-152+6x=120 | | 74=3x^2+10 | | x/10-9=13/20 | | 0.14(y-9)+0.08y=0.02y-0.03(50) | | 4-3u=-u | | 2x-5(x-2)=-6+5x-32 | | 2x-5(x-2=-6+5x-32 | | 8-2x=-5x+5 | | 6a+4=4a+10 | | (26x)+((27x)+2)=53x-2 | | 10(k-7)=50 | | 180=3(x+5) | | 5+9p=6+8p | | -5-4b=6b-1 | | F(x)=-4x+13 | | 8x-32-6x=36 | | 1/1*d-3=2 | | 1/1d-3=2 | | -9d+3=-6d-9 |

Equations solver categories