224=(8+2x)(10+2x)

Simple and best practice solution for 224=(8+2x)(10+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 224=(8+2x)(10+2x) equation:



224=(8+2x)(10+2x)
We move all terms to the left:
224-((8+2x)(10+2x))=0
We add all the numbers together, and all the variables
-((2x+8)(2x+10))+224=0
We multiply parentheses ..
-((+4x^2+20x+16x+80))+224=0
We calculate terms in parentheses: -((+4x^2+20x+16x+80)), so:
(+4x^2+20x+16x+80)
We get rid of parentheses
4x^2+20x+16x+80
We add all the numbers together, and all the variables
4x^2+36x+80
Back to the equation:
-(4x^2+36x+80)
We get rid of parentheses
-4x^2-36x-80+224=0
We add all the numbers together, and all the variables
-4x^2-36x+144=0
a = -4; b = -36; c = +144;
Δ = b2-4ac
Δ = -362-4·(-4)·144
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-60}{2*-4}=\frac{-24}{-8} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+60}{2*-4}=\frac{96}{-8} =-12 $

See similar equations:

| 6y2-11y+3=0 | | 5x+1=2x–5 | | c/2-5=-3/2 | | x=21=6 | | 3(6z-4)=18z-4 | | (3x)+(x+2)=60 | | Yx.9=100 | | 5x^-12=2x^+3 | | 5y+(+5)=10 | | 7k=-6+6k | | 10x+6+13x+-2+8x+109=360 | | 3t+10=10+10t | | 10x+6+13x+-2+8x+71=360 | | 3x+3x+18=x | | x+4=-67 | | 2(w+1)+2=8 | | -3(s+8)=3 | | 1/2(-10x+4)=-4(-3+2×)+8 | | –3(s+8)=3 | | 1/2(-10x+4)=-4(-3+2×)+8= | | 3x4/2=5/6 | | 545-s=264 | | 27=w/4+18 | | n/10+22=26 | | 7(x–1)=21 | | 3x÷3=9÷3 | | 2​c​​+​6​=​​c​−13 | | 12=-16x^2+50x | | 5/n=4/13 | | 18=-y | | 37=t/5+27 | | 370=-26+9n |

Equations solver categories