If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22+q2=64
We move all terms to the left:
22+q2-(64)=0
We add all the numbers together, and all the variables
q^2-42=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $
| 78=15+7f | | 6x=9/33 | | 6x-8+2x=40 | | 20=4+y5 | | 6/x=9/13 | | 32m+81=89 | | w4+4=8 | | (2/3x)-10=-12 | | 19+y=92 | | 8y-21=43 | | 2x^2+15+28=0 | | X10-33x5+32=0 | | 4n+12=7n-9 | | 129+24x=3 | | 5x+3x-4x-5=23 | | 5x-8=18-3x | | 3(4h-5)=(2h-5) | | 18+.12x=30 | | 2x+14+6x-4=34 | | 2x-5+1+x=+x-2x | | 7=x+7+4x+2 | | 12+3x=8x-3 | | 4e+3=2e+8 | | 9h-18=3 | | -22=6y-2 | | 10x-116=90 | | 59+15x=500 | | 18=2x-6+x-4 | | n-21/4=0 | | 7c+7=2c+4 | | 7x+3=3x+3* | | 2x-6+2x-4=18 |