If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-7x=0
a = 21; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·21·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*21}=\frac{0}{42} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*21}=\frac{14}{42} =1/3 $
| 6x^2−11x−35=0 | | -7t=-8/5 | | 7+0.10m=25+m | | 2(1/3x+4)-6=-1/3(3x-21) | | 6=-9=b | | 2(1/3x+4)-6=-1/3(3x-21 | | d-2.7=-4.5 | | 14.99x-2.5=13.49-1.00 | | 8x-(5x-8)=29 | | 1/9(y+18)+1/3(2y+)=y+3 | | -9x-6=-3(3+2) | | -13+5n=-8(7n-6) | | 4x^2+1444x+131040=0 | | 540=a+2a+1+2a-8+a-8+44 | | -22+3x=18-2x | | 72=4(5x+8) | | -13/14+p=1/7 | | 8s=6s+8 | | .5x2-3=2 | | 72=4(5x=8) | | 2^x=3^2x-5 | | 3x-7=1/3(9x+21) | | 7(3n+8)=-35+8n | | -c=7 | | f(-3)=3(-3)^2-2(-3)+1 | | 7x-4=76 | | 540=121+z+49+5+7z+11z+137 | | 1/7(x-21)+5=4 | | 0+6y=21 | | 180=b+39+3b+3+43+b | | -2=-1/2x-3 | | 540=25u+148+49+u+23u+u+43 |