If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21g^2+31g=0
a = 21; b = 31; c = 0;
Δ = b2-4ac
Δ = 312-4·21·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-31}{2*21}=\frac{-62}{42} =-1+10/21 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+31}{2*21}=\frac{0}{42} =0 $
| 24÷a+3=11 | | x/2+2=1 | | x/2+20=1 | | 3(n+4)=1/2(6n+4 | | 7c=c+24 | | -1/2x+4=3/4x+1 | | a÷6+3=10 | | -5(m-2)=-50 | | p+42=4p | | 7a+2=10a+28 | | 9m-18=62 | | x-0.4=2.1 | | 3/5x+1/3=1/5x+2/15 | | (5t-11)/4=13-t | | 4(2x+3=) | | s2+9s-22=0 | | 70=-8x-107 | | 3/4x+3/4=1/2x+12.4 | | 3x+2x3=12 | | y+3.3=-8.7-4.6 | | 11n+9=5n+27 | | 13x-6+40=16x+13 | | 2394=42(p+25) | | 3x^2-3x-24=0 | | H(t)=-6t^2-12t+90 | | 4a-10-9a+17=21 | | 22x=18x+8 | | 4a=a+51 | | .50x+.45(70)=47.5 | | 9x-43=6x-10 | | 3x=8=2x+21 | | -90=-100+x |