21=3(x2+4)

Simple and best practice solution for 21=3(x2+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 21=3(x2+4) equation:



21=3(x2+4)
We move all terms to the left:
21-(3(x2+4))=0
We add all the numbers together, and all the variables
-(3(+x^2+4))+21=0
We calculate terms in parentheses: -(3(+x^2+4)), so:
3(+x^2+4)
We multiply parentheses
3x^2+12
Back to the equation:
-(3x^2+12)
We get rid of parentheses
-3x^2-12+21=0
We add all the numbers together, and all the variables
-3x^2+9=0
a = -3; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-3)·9
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*-3}=\frac{0-6\sqrt{3}}{-6} =-\frac{6\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*-3}=\frac{0+6\sqrt{3}}{-6} =\frac{6\sqrt{3}}{-6} =\frac{\sqrt{3}}{-1} $

See similar equations:

| -5(6y-9)-y=-2(y-5) | | 4x-3=-6x+2 | | M1=3x+6 | | -2(x+5)=-21 | | 9(2x+3)=10 | | (3x-2)=9x-7 | | 5x+5-7(x+1)=7x+3 | | 9(2x-8)-4(x-8)=x | | 5x-9=-89 | | 12x-1+9=20x | | -15(3-p)=5(2p-21 | | 8x+11=47 | | y2+6y-40=0 | | 12r=132r= | | 8k-6=6(k+3+6k) | | 2x+25+3=x+19 | | 1/2X^2-5/2x+1/8=0 | | 7(5x+8)=12-x+4) | | 3(x1)=2x+9 | | 3x−5=61 | | Y+4-5y=6-5y-4 | | -8+22=13x-5x-12x | | −117=−23+n | | 4t+7-t=10+3t | | 6+4a+8=-14 | | 87+n=35 | | 42b=-336 | | 3x-12+30=60 | | -7/4=2/3t | | 103=v-(-72) | | 0.15x=40x+0.05x | | -5+3n=-29 |

Equations solver categories