21462/x2=95

Simple and best practice solution for 21462/x2=95 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 21462/x2=95 equation:



21462/x2=95
We move all terms to the left:
21462/x2-(95)=0
Domain of the equation: x2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-95*x2+21462=0
We add all the numbers together, and all the variables
-95x^2+21462=0
a = -95; b = 0; c = +21462;
Δ = b2-4ac
Δ = 02-4·(-95)·21462
Δ = 8155560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8155560}=\sqrt{196*41610}=\sqrt{196}*\sqrt{41610}=14\sqrt{41610}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{41610}}{2*-95}=\frac{0-14\sqrt{41610}}{-190} =-\frac{14\sqrt{41610}}{-190} =-\frac{7\sqrt{41610}}{-95} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{41610}}{2*-95}=\frac{0+14\sqrt{41610}}{-190} =\frac{14\sqrt{41610}}{-190} =\frac{7\sqrt{41610}}{-95} $

See similar equations:

| 6x^2-7x+15=0 | | 3(y+14)=60 | | -71=-6+5j | | 3(4n-5)=6(n+3) | | 9(b+11)=-144 | | 16-2(3x+5)=38 | | 5x+23=3x+33 | | 24+x+24=62 | | −3−2x2=−(x−2) | | 36+13m=244 | | -2.1x=6.3 | | 29n-108=153 | | 2(w-1)=9w+47 | | |3q+6|=5q+2 | | 4x–8+2x=11+5 | | 99=0.75x | | −18+2x=13(18+6x)−4 | | 2(4)^2x=64 | | 4j−–4=16 | | 2x+8x=100* | | -5x+8=-2(x+8) | | 1x+5+2x+6=25 | | u/3+–10=–12 | | 6x+4=18x+12/3 | | 32n-99=189 | | 6x+.666=3x+11/6 | | u/3+ –10=–12 | | F(x)=1/2x-6 | | 72=y+53 | | 4x+29=-5-8(x+6) | | 0.1(2x+3)= | | 8x=200$ |

Equations solver categories