If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21/2x-3/42x+5=3/8
We move all terms to the left:
21/2x-3/42x+5-(3/8)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 42x!=0We add all the numbers together, and all the variables
x!=0/42
x!=0
x∈R
21/2x-3/42x+5-(+3/8)=0
We get rid of parentheses
21/2x-3/42x+5-3/8=0
We calculate fractions
(-1008x^2)/5376x^2+56448x/5376x^2+(-384x)/5376x^2+5=0
We multiply all the terms by the denominator
(-1008x^2)+56448x+(-384x)+5*5376x^2=0
Wy multiply elements
(-1008x^2)+26880x^2+56448x+(-384x)=0
We get rid of parentheses
-1008x^2+26880x^2+56448x-384x=0
We add all the numbers together, and all the variables
25872x^2+56064x=0
a = 25872; b = 56064; c = 0;
Δ = b2-4ac
Δ = 560642-4·25872·0
Δ = 3143172096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3143172096}=56064$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56064)-56064}{2*25872}=\frac{-112128}{51744} =-2+90/539 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56064)+56064}{2*25872}=\frac{0}{51744} =0 $
| x/48=-30+26 | | 4x+2(1.50+x)=30 | | (10x-6)+(x-1)=180 | | 2x+8+3x-4=20 | | (2x+4)=x+8=5x | | 19p=133 | | -15.7=-3.2+x/5 | | 2x2-5=27 | | 3×-2=4y+5 | | 100/5x=200 | | 3(1+2x)-5(3x+1)=38 | | –11+m=25. | | 4(x+8)-3x=42* | | 2x+4=x+8=5x | | 7y-4=35+7y | | 3/5x+-8=-4 | | 196=-n+5(-7n-4) | | 4+2b=5=5(b+4) | | 3/5x15=6/5x+12 | | x/45=-35+22 | | –11+m=25 | | -18+33=-5(x+7) | | 25-r^2=9r | | 4+2b=5=5(6+4) | | 2d=18=12-6d-42 | | ((3x/8)-1)=5/8 | | 14-3/4n=-22 | | 4+2b=5=5(6+40 | | 8y–24=8(y–) | | -8+-x=-12 | | ∠A=6x−48+∠B=4x+38 | | (3x/8-1)=5/8 |