21+7n=3(1+4n)4n

Simple and best practice solution for 21+7n=3(1+4n)4n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 21+7n=3(1+4n)4n equation:


Simplifying
21 + 7n = 3(1 + 4n) * 4n

Reorder the terms for easier multiplication:
21 + 7n = 3 * 4n(1 + 4n)

Multiply 3 * 4
21 + 7n = 12n(1 + 4n)
21 + 7n = (1 * 12n + 4n * 12n)
21 + 7n = (12n + 48n2)

Solving
21 + 7n = 12n + 48n2

Solving for variable 'n'.

Combine like terms: 7n + -12n = -5n
21 + -5n + -48n2 = 12n + 48n2 + -12n + -48n2

Reorder the terms:
21 + -5n + -48n2 = 12n + -12n + 48n2 + -48n2

Combine like terms: 12n + -12n = 0
21 + -5n + -48n2 = 0 + 48n2 + -48n2
21 + -5n + -48n2 = 48n2 + -48n2

Combine like terms: 48n2 + -48n2 = 0
21 + -5n + -48n2 = 0

Begin completing the square.  Divide all terms by
-48 the coefficient of the squared term: 

Divide each side by '-48'.
-0.4375 + 0.1041666667n + n2 = 0

Move the constant term to the right:

Add '0.4375' to each side of the equation.
-0.4375 + 0.1041666667n + 0.4375 + n2 = 0 + 0.4375

Reorder the terms:
-0.4375 + 0.4375 + 0.1041666667n + n2 = 0 + 0.4375

Combine like terms: -0.4375 + 0.4375 = 0.0000
0.0000 + 0.1041666667n + n2 = 0 + 0.4375
0.1041666667n + n2 = 0 + 0.4375

Combine like terms: 0 + 0.4375 = 0.4375
0.1041666667n + n2 = 0.4375

The n term is 0.1041666667n.  Take half its coefficient (0.05208333335).
Square it (0.002712673613) and add it to both sides.

Add '0.002712673613' to each side of the equation.
0.1041666667n + 0.002712673613 + n2 = 0.4375 + 0.002712673613

Reorder the terms:
0.002712673613 + 0.1041666667n + n2 = 0.4375 + 0.002712673613

Combine like terms: 0.4375 + 0.002712673613 = 0.440212673613
0.002712673613 + 0.1041666667n + n2 = 0.440212673613

Factor a perfect square on the left side:
(n + 0.05208333335)(n + 0.05208333335) = 0.440212673613

Calculate the square root of the right side: 0.663485247

Break this problem into two subproblems by setting 
(n + 0.05208333335) equal to 0.663485247 and -0.663485247.

Subproblem 1

n + 0.05208333335 = 0.663485247 Simplifying n + 0.05208333335 = 0.663485247 Reorder the terms: 0.05208333335 + n = 0.663485247 Solving 0.05208333335 + n = 0.663485247 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-0.05208333335' to each side of the equation. 0.05208333335 + -0.05208333335 + n = 0.663485247 + -0.05208333335 Combine like terms: 0.05208333335 + -0.05208333335 = 0.00000000000 0.00000000000 + n = 0.663485247 + -0.05208333335 n = 0.663485247 + -0.05208333335 Combine like terms: 0.663485247 + -0.05208333335 = 0.61140191365 n = 0.61140191365 Simplifying n = 0.61140191365

Subproblem 2

n + 0.05208333335 = -0.663485247 Simplifying n + 0.05208333335 = -0.663485247 Reorder the terms: 0.05208333335 + n = -0.663485247 Solving 0.05208333335 + n = -0.663485247 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-0.05208333335' to each side of the equation. 0.05208333335 + -0.05208333335 + n = -0.663485247 + -0.05208333335 Combine like terms: 0.05208333335 + -0.05208333335 = 0.00000000000 0.00000000000 + n = -0.663485247 + -0.05208333335 n = -0.663485247 + -0.05208333335 Combine like terms: -0.663485247 + -0.05208333335 = -0.71556858035 n = -0.71556858035 Simplifying n = -0.71556858035

Solution

The solution to the problem is based on the solutions from the subproblems. n = {0.61140191365, -0.71556858035}

See similar equations:

| 25xy^2-36x= | | -16t^2+75t+25=0 | | 5a^2+7=3a^2+25 | | 0.10(d-11)= | | 8-3x+6x=5 | | 9j+16=3j+21 | | -4x-7=-7+6x | | 12-7x=98+6x | | 61=-7x+2x+1 | | -90-(-29)-38(-52)= | | 7x-4+6x=74 | | 3y+15x=0 | | 2x^2=(-2)x-(-24) | | 5x^2+15=3x^2+65 | | -2x+7-7x=-74 | | x+3x(x+40)=180 | | 75r-27= | | 8g+16=5g-1 | | 3(2x+7)=13+2(4x+18) | | 3x-9-4x=-8 | | 1.5D+1=7 | | -3(v+1)=-5(v+12) | | -8+12e=-30 | | 3x^3-3x^2-x+1=0 | | 0=2x-tanx | | y^4-81= | | Y=3.5x+60 | | 4x+8=20x | | 4z-1=0 | | 5x-10-3x=-10 | | -x+6=3x+11 | | 20p^2-8p-1= |

Equations solver categories