20x=(x+6)(20-x-1)

Simple and best practice solution for 20x=(x+6)(20-x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20x=(x+6)(20-x-1) equation:


Simplifying
20x = (x + 6)(20 + -1x + -1)

Reorder the terms:
20x = (6 + x)(20 + -1x + -1)

Reorder the terms:
20x = (6 + x)(20 + -1 + -1x)

Combine like terms: 20 + -1 = 19
20x = (6 + x)(19 + -1x)

Multiply (6 + x) * (19 + -1x)
20x = (6(19 + -1x) + x(19 + -1x))
20x = ((19 * 6 + -1x * 6) + x(19 + -1x))
20x = ((114 + -6x) + x(19 + -1x))
20x = (114 + -6x + (19 * x + -1x * x))
20x = (114 + -6x + (19x + -1x2))

Combine like terms: -6x + 19x = 13x
20x = (114 + 13x + -1x2)

Solving
20x = 114 + 13x + -1x2

Solving for variable 'x'.

Reorder the terms:
-114 + 20x + -13x + x2 = 114 + 13x + -1x2 + -114 + -13x + x2

Combine like terms: 20x + -13x = 7x
-114 + 7x + x2 = 114 + 13x + -1x2 + -114 + -13x + x2

Reorder the terms:
-114 + 7x + x2 = 114 + -114 + 13x + -13x + -1x2 + x2

Combine like terms: 114 + -114 = 0
-114 + 7x + x2 = 0 + 13x + -13x + -1x2 + x2
-114 + 7x + x2 = 13x + -13x + -1x2 + x2

Combine like terms: 13x + -13x = 0
-114 + 7x + x2 = 0 + -1x2 + x2
-114 + 7x + x2 = -1x2 + x2

Combine like terms: -1x2 + x2 = 0
-114 + 7x + x2 = 0

Begin completing the square.

Move the constant term to the right:

Add '114' to each side of the equation.
-114 + 7x + 114 + x2 = 0 + 114

Reorder the terms:
-114 + 114 + 7x + x2 = 0 + 114

Combine like terms: -114 + 114 = 0
0 + 7x + x2 = 0 + 114
7x + x2 = 0 + 114

Combine like terms: 0 + 114 = 114
7x + x2 = 114

The x term is 7x.  Take half its coefficient (3.5).
Square it (12.25) and add it to both sides.

Add '12.25' to each side of the equation.
7x + 12.25 + x2 = 114 + 12.25

Reorder the terms:
12.25 + 7x + x2 = 114 + 12.25

Combine like terms: 114 + 12.25 = 126.25
12.25 + 7x + x2 = 126.25

Factor a perfect square on the left side:
(x + 3.5)(x + 3.5) = 126.25

Calculate the square root of the right side: 11.236102527

Break this problem into two subproblems by setting 
(x + 3.5) equal to 11.236102527 and -11.236102527.

Subproblem 1

x + 3.5 = 11.236102527 Simplifying x + 3.5 = 11.236102527 Reorder the terms: 3.5 + x = 11.236102527 Solving 3.5 + x = 11.236102527 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.5' to each side of the equation. 3.5 + -3.5 + x = 11.236102527 + -3.5 Combine like terms: 3.5 + -3.5 = 0.0 0.0 + x = 11.236102527 + -3.5 x = 11.236102527 + -3.5 Combine like terms: 11.236102527 + -3.5 = 7.736102527 x = 7.736102527 Simplifying x = 7.736102527

Subproblem 2

x + 3.5 = -11.236102527 Simplifying x + 3.5 = -11.236102527 Reorder the terms: 3.5 + x = -11.236102527 Solving 3.5 + x = -11.236102527 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.5' to each side of the equation. 3.5 + -3.5 + x = -11.236102527 + -3.5 Combine like terms: 3.5 + -3.5 = 0.0 0.0 + x = -11.236102527 + -3.5 x = -11.236102527 + -3.5 Combine like terms: -11.236102527 + -3.5 = -14.736102527 x = -14.736102527 Simplifying x = -14.736102527

Solution

The solution to the problem is based on the solutions from the subproblems. x = {7.736102527, -14.736102527}

See similar equations:

| 720=(n-2)(180) | | 4+15(2-4X)=3(X-9) | | -4x-49=-8x-5 | | x^3-4x-x+3=0 | | 13sinx+12cosx+36=0 | | x^3-5*x+3=0 | | 4(t-4)+8t=4(3t+4)-10 | | -2x+17=-3x-1 | | .9=log(x) | | 2(3x-5)+7=6x-3 | | (7u+6v)(7u-6v)= | | (5(x-3))/6-x=1-x/9 | | x^3+15x^2+75+132=0 | | -14x-46=-12x-1+3x | | (x+5)3+7=0 | | -3x-4=-2x | | 9x-72=5x-8 | | 5x+4=2x+2x+17 | | p/4=11/6 | | 3y-6y^2/y^2-12 | | =(7x-8y)(7x-8y) | | 3y-6x+3z-5y= | | X/5=20/12 | | -3(2s-4)-12=-2(8s+7)-3 | | 127/180 | | (6x-9)/3 | | (x+7)(x-18)=0 | | -7/2x=-14 | | (8-7i)+(6-3i)= | | 1000(7x-10)=50(204+100x) | | -(3y+1)-(-2-7)=5 | | 4x-5+3x+2x+7=65 |

Equations solver categories