If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2=225
We move all terms to the left:
20x^2-(225)=0
a = 20; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·20·(-225)
Δ = 18000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18000}=\sqrt{3600*5}=\sqrt{3600}*\sqrt{5}=60\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{5}}{2*20}=\frac{0-60\sqrt{5}}{40} =-\frac{60\sqrt{5}}{40} =-\frac{3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{5}}{2*20}=\frac{0+60\sqrt{5}}{40} =\frac{60\sqrt{5}}{40} =\frac{3\sqrt{5}}{2} $
| X-32=-18+8x | | m+6/1=0 | | x+2x+4x+150=180 | | 20x=225 | | t=9.5 | | x/14+3=2 | | x+2=18+2 | | (×+16)+(4x-5)=180 | | -7+n/2=1 | | 18r^2-130r+28=0 | | (x+5)^(4/3)=625 | | 4-3(1-x)+12=5(x+3) | | 0=-1+k/10 | | 7x+5=13x(-5) | | (X×16)=(4x-5) | | 8n–4n-4=4 | | 6k^2+37k+56=0 | | -114=-6+9b | | y=3.77+1.75 | | 12m+2=2136 | | 13x-5=7x+5 | | 13x-5=7x=5 | | -58=-6-4x | | 3y=36-8 | | x+x^2-0.29922=0 | | 4x-2(x=1.75)=4 | | 18x^2+57x+35=0 | | 19=v/5-10 | | 6(b-3)=3(b-6) | | 6k^2+37k-30=0 | | 7x+35+25=180 | | 3y=36+8 |