If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-36x=0
a = 20; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·20·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*20}=\frac{0}{40} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*20}=\frac{72}{40} =1+4/5 $
| 1/5-x=x | | 13=2.5(z+7) | | 3-6y+1=7y | | x*2/3=1/4 | | 44^2=y | | 4x-x=3x-2x+2 | | 15=3(n-2) | | n=4/8=-2 | | -13=r9+8−13=9r+8 | | 10/3x+11/5=7/8 | | 1/3s/14=26 | | 4.4+1.9n=0.22 | | 18=12+0.12p | | (1/4)+(5/2)x=(3/2)+(7/3)x | | (n-6)(2n+5)=0 | | 31/3x+21/5=7/8 | | 2(x+10)−2=63−3x | | 111x-5=-5 | | -3k+9k-5=11k+826k | | 6m-5m+1=13 | | 8x+2=8(x-2) | | 1200=430+5f | | 5u+5u-5u-4u=9 | | 1200=5f+430 | | 11x-27=7x+5 | | 5z-5z+z=13 | | 1/4+5/2x=7/3x | | 13d-2d-10d=18 | | 4g-3g=9 | | 5x+5=3x−55x+5=3x−5 | | 4x+2x=2x+20 | | 10.25=7x+A |