If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-240x+1=0
a = 20; b = -240; c = +1;
Δ = b2-4ac
Δ = -2402-4·20·1
Δ = 57520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{57520}=\sqrt{16*3595}=\sqrt{16}*\sqrt{3595}=4\sqrt{3595}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-4\sqrt{3595}}{2*20}=\frac{240-4\sqrt{3595}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+4\sqrt{3595}}{2*20}=\frac{240+4\sqrt{3595}}{40} $
| -4+4(2x-1)=-2(x=7)+15 | | X2+12x-405=0 | | x*1/100=28 | | X⁴-2x³-2x²+2x+1=0 | | 5y+7−2y=25 | | 2x–1=3x–5 | | (x+4)(x+-12)=0 | | 3=3+14t=5t^2 | | I=2s=6 | | (D6−5D5+12D4−6D3−9D2+12D−4)y=0 | | 5x+9=3x+ | | 3x+2x+4x=27 | | 5x+7=79+2x | | 5÷a=20 | | 17+2x+x=180° | | 35/(14-m)=7 | | 2(-x+3)=-3(-4x+5) | | |5x+1|=3x-3| | | x/4x+2^2=28 | | 40-4a=38-3a | | 6n+10=-100 | | 5x÷8+15=-5 | | 4a–5=a+4 | | 24x^2-12x-14=0 | | x/5+11/1=1/15 | | 9a-6=75 | | 3x+20+(2x)=180 | | Y=41.5-0.45x | | P=5g | | 5(x-4x)=2x-34+3x. | | x+(x/4)+(x-13)=76 | | 24=4/(1-x) |