If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-20=0
a = 20; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·20·(-20)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*20}=\frac{-40}{40} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*20}=\frac{40}{40} =1 $
| 3(8x+2)-15=183 | | 2(x-4.20)=9.80 | | 2(x-$4.20)=$9.80 | | 22x=75 | | x/30=1/100 | | 2Y^2+16y=80 | | 0,7867x*63800=274389 | | y=0.1428571429 | | 4x+6=x-7(x-1) | | 4x-1/2=6/7 | | x^2+8x+10=93.5 | | F(x)=x2-36x | | 15x+69=3x+33 | | x^2+x=83.5 | | 13.26=t-24.45 | | 4x-2=3x+33 | | 2x-x=6+x | | 32+30x=32 | | -15m-9=105 | | x/3-x/2=3-x/4 | | 7+3x=4(0,75x+7) | | 4-x=(32+x)-(2x+28) | | 3j-11=7 | | 19-2m=3 | | X/x+9=-2/x+7 | | 5/x=0 | | x+x-2+x+4=28 | | y*13=34 | | 3^(5x-1)=500000 | | 27-3d=9 | | 4n^2=80 | | 3/x-7=23 |